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On the Kinetic Description of Condensation in Binary Vapours

By J. ScumeLzer and F. SCHWEITZER

Sektion Physik der Wilhelm-Pieck-Universitiit Rostock, DDR

Abstract. Based on a thermodynamic analysis and an earlier developed general growth equation
for clusters of a new phase, the kinetics of growth of droplets in a binary gaseous mixture under
isothermal and isobaric conditions is described. Differential equations for the time development of
the mean radius of the droplets, the number of droplets, and the overall mass concentrated in the
droplets are obtained. These equations describe the evolution of the system of droplets beginning
after the nucleation period has finished. The equations can be easily solved numerically. For long
times analytic solutions are derived. It is shown that the growth of droplets proceeds accordingly
to the mechanism of Ostwald ripening.

Zur kinetischen Beschreibung der Kondensation binédrer Dimpfe

Inhaltsiibersicht. Basierend auf einer thermodynamischen Analyse und unter Verwendung
einer frither entwickelten allgemeinen Wachstumsgleichung fiir Keime einer neuen Phase wird die
Kinetik des Wachstums von Tropfen in einer bindren Gasmischung unter isobar-isothermen Bedin-
gungen mathematisch beschrieben. Es werden Ausdriicke fiir die zeitliche Entwicklung des mittleren
Tropfenradius, der Tropfenzahl und der Gesamtmenge der fliissigen Phase erhalten. Diese Gleichun-
gen beschreiben die zeitliche Entwicklung des Systems von Tropfen, beginnend unmittelbar nach
Abschluf der Keimbildungsphase. Sie sind relativ einfach numerisch 16sbar, fiir grofie Zeiten kénnen
analytische Losungen angegeben werden. Es wird gezeigt, dal das Wachstum von Tropfen in der
Gasphase nach dem Mechanismus der Ostwaldreifung erfolgt.

1. Introduetion

Thermodynamic phase transitions of first order frequently proceed in two stages.
In the first stage of nucleation a big number of relatively small clusters appear. The
second stage is characterized by the growth of these clusters connected especially in the
later periods of growth with a decrease of their number. The evolution of the system is
qualitatively determined by the thermodynamic constraints [1—5].

Based on a thermodynamic analysis and a recently developed growth equation for
clusters of a new phase [4—6] in preceding papers [b] the growth of droplets in a one-
component vapour under isochoric and isothermal conditions was described mathemati-
cally. It was shown that the growth of the droplets under the mentioned conditions can
be considered as a special case of Ostwald ripening and a method of kinetic description
of this process including the initial stage has been proposed.

Condensation processes in real systems, e.g., the condensation of water in the atmo-
sphere, do not proceed under isochoric but isobaric conditions. For this reason in the
present paper the investigations are extended to multicomponent systems under iso-
thermal and isobaric constraints.
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First some general thermodynamic conclusions concerning the properties of ensemb-
les of clusters under these conditions are derived. After then a model for the conden-
sation process is developed and analyzed in detail. On the basis of this model the growth
of droplets is described using the method proposed in preceding papers [4, b].

Tt is shown that the depletion of the surrounding medium as & result of the evolution
of the new phase leads to qualitatively the same behaviour as it has been noticed in the
investigation of condensation under isobhermal and isochoric conditions in one-compo-
nent systems.

We restrict ourselves here to the kinetic description of the growth of the clusters of
the new phase and do mot consider nucleation processes [13, 14, 15]. The influence
of the depletion of the surrounding medium on the nucleation stage, the conclusions
which can be drawn from the outlined thermodynamic analysis for a description of the
whole process of the phase transition [16, 17] will be discussed later. -

The thermodynamic properties of the vapour are assumed here to be as simple as
possible. The outlined method is also applicable to systems with a more complex thermo-
dynamic behaviour.

2, Description the Model ,
We consider a mixture of gases. The thermodynamic constraints are given by

T = const., p = const., n;=const, =1,2,..., k. (2.1)

T is the temperature, p the pressure and »; the number of moles of the i-th component
of the gas. Chemical reactions do not proceed.

The characteristic thermodynamic potential is the free enthalpy &.

For the homogeneous initial state the free enthalpy Gyom can be written in the fol-

lowing form:
k
G hom = _21 A (2.2)
=

;i is the chemical potential of the i-th component.

The homogeneous initial state is assumed to be metastable. The formation of droplets
can lead therefore to a phase transition of first order.

The free enthalpy Gy, of the heterogeneous state consisting of s droplets in the gaseous
medium can be approximately expressed by [2, 7]:

N § . 0 3 i1 7" - . k '
Ohet = 2 {(p — p)VP + oPOP + 2 M%L’ni-a?} + 2 pigip (2.8)
j= = b=

ol? is the surface tension, OY the surface area of the j-th droplet, V is the volume of
the whole system. The subscripts & and f specify the thermodynamic parameters of
the clusters (o) and the medium (). Parameters without such a subscript refer to the
homogeneous initial state.
The formation of droplets is connected with a change of the free enthalpy
AQ = Gy — Gpom Of the system.
s k
Aa = 3 Lo —dV9 + 3 (2 — gl + 09}
] =1

j=1

) (2.4)
+ 2 (pip — B

i=1
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Under the assumed constraints (2.1) 4G is equal to the work of formation of the ensemble
of clusters [8]. A
The extreme values of AQ, which are especially important for the process of nuclea-
tion and growth of the clusters, are given by:
: S dOP\ ok y
a6 = 3 {(p 20+ o Grip) WO+ 2 @ — 2] 0. (29)
From (2.5) the following necessary conditions for extreme values of AG' can be obtained:

L 2040 : .
p—pP =5, =g =12 (2.6)

Generally it can be shown (appendix), that states of the heterogeneous system defined
by the equations (2.5) or (2.6) correspond either to minimum values of the thermodyna-
mic potential Gy, (thermodynamically stable states) or to unstable states of saddle-
point type (critical states). Maxima of Gy, are possible only if additional approximations
concerning the thermodynamic properties of the considered system are assumed. Such
additional approximation (for instance, incompressibility of the liquid) can lead to a
reduction of the number of independent variables and therefore to the consideration
of a cut through the surface of free enthalpy. In this case saddle points can degenerate
to maxima.

Further it can be shown generally (appendix), that for one-component systems under
the constraints (2.1) a thermodynamically stable state consisting of s clusters (s > 1)
in the medium cannot exist. For a fixed number of clusters the equations (2.6) have only
one solution. This solution corresponds to a saddle point or, if the liquid is assumed to
be incompressible, to a maximum of the free enthalpy. In this extreme state all droplets
have the same parameters independent of the number of droplets. Kach droplet is
formed and grows independently of the existence of other droplets. Therefore in this case
a stage of nucleation and simultaneous independent growth of supercritical clusters
succeeds to the first stage of nucleation. The rate of nucleation can be calculated by
the classical nucleation theory [9] or their modifications [13, 15].

In the present paper binary systems are considered. It is assumed that a closed sy-
stem with the volume V contains #, and n, moles of two different gases (Fig. 1). The.
thermodynamic constraints are chosen in such a way that the gas n, by nucleation and
growth can undergo a transition to the liquid state. It is assumed further, that the liquid
consists only of particles of the second component.

P,T

/

LTI

0y, N2

Fig. 1. Model for the description of a condensation process under isobaric andisothermal constraints.
The pressure is kept constant by the moveahble piston



286 , Ann. Physik Leipzig 44 (1987) 4

Independent from the thermodynamic properties of the gases and the liquid it can
be shown (appendix) that the extremum conditions can be fulfilled only if all s droplets
have the same parameters, the paramebers of the -clusters depend on the number of
clusters. States consisting of s clusters (s > 1) cannot -be thermodynamically stable.

Tor the considered model equation (2.4) can be transformed into the following
expression :

s 2
AG = 2 {(p — PIVVED + (4 — prap) ng) -+ oPOP} + 3 (pip — padre
j=1 =1

(2.7)

Assuming further that the liquid is incompressible and the mixture is an ideal one,
we get: -

1
Hon = U +€—);(pa—%), Q= >

pap = o+ B[ Lt — )|, g = g+ BT T [Za—-a], e
0 0

pap = po - BT ln[—p—wﬁ} s g = g+ BT In [ﬁx].
Po Po

The change of the free enthalpy connected with the development of s identical droplets
is given by

AG = sV (p — py) — 50s Vau BT lnpx"o'—l— so,0,

r

1—= x (2.9)
+ 1 RT In B+ ng BT In—L .
1—= x
Here the following abbreviations are used:
Do Mo — Ppressure and chemical potential of the pure gas n, in equilibrium with the
liquid at a plane surface,
z,x; — molefraction of the second component in the homogeneous initial state and
during the condensation process,
typ ~ — chemical potential of the pure gas n, ab the pressure p;.
Consequently it is possible to write
P = 2 PO, S — (2.10)

- 3
Ty -+ Ny Py g smy

In the following the notation n = n; - n, will be used.

3. Thermodynamic Analysis of the Model
The necessary condition for the possibility of a condensation process to appear is
given by

phoo(p) — pap(®) < 0 , (3.1)
or

(0 — p) — BT [E] <0 (8.2)

Po
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Therefore, the quantity @ defined by (3.3)

pr p— P,
—nPE_P— P 3.3
O = Po 0BT’ (5:9)

can be considered as an appropriate measure of the initial supersaturation. For given
values of p, and x, @ is uniquely connected with the quantity y = p/p, which is used
as another measure of supersaturation.

For not too high fixed values of s the function 4G — AG(r,) has a behaviour quali-
tatively presented in Fig. 2. There exists a critical radius of the droplets r,,. This
radius corresponds to a relative maximum of the characteristic thermodynamic poten-
tial supposing the number of droplets is fixed. The finiteness of the system, here due to
the condition n, = const., leads to a relative minimum of AQ for Py == Tys.

AGKJ) 4

[n

&
X
————————d

r(nm)

Fig. 2. Qualitative behaviour of the function 4G = AG(r,,) for fixed not too high values of the number
of droplets. The arrows indicate the variation of the position of the extremes with an increase of the
number of droplets '

The extremes of the function AG are determined by

o4G\ 2 ' P (ng — sn,) P — Dy 20 _
(ara ) = —dnrlog. T |In [EoZ n = sna)} 0BT @aRTra} =0

(3.4)
The equation (3.4) leads to a generalized Gibbs-Thomson equation:
P (ng — 37’/0«)] P—D 2o
£ — — = 0. 3.
g )~ e (40)

This equation gives for the extreme values of AG a relation between the number of
clusters and their radius. The first derivative of equation (3.5) with respect to s leads
to the following equation:

dr, Ty 1

. 3.6
ds 3¢ 1+ 71 (3.6)
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Here Z is determined by

Qit SN, .
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Z = —3RT

20(ny — sm,) (n — sn,)

(3.7)

Z is always smaller than zero. Further information about Z can be obtained from the

extreme conditions.

The second partial derivative of AG can be expressed by

2
| (%TY) = —8mos(l | Z), (3.8)
-4 S
and consequently the following equations are valid:
024G dr, )
("673")8 <O 14Z>0, Z250 forr, =y, (3.9)
4@ dr, .
(3’i)s>o, 1—};Z<O, —J;<O forrlx:ras.
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Fig. 3. Molar critical number of cluster s,
function of the initial supersaturation expr
fraction & (ethanol, 7 — 312.35 K)
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The change of the extremes of AQ in dependence on the number of clusters s is given
by

d 1
-d—SAG =3 o0. (3.10)
This variation is indicated in Fig. 2 by arrows. There exists a critical value s, of the
number of clusters. Fors > s, 4Q is a monotonically increasing function of the common
radius of the clusters r,. :

The critical number of clusters s, and the corresponding critical radius r,,, are pre-
sented in Fig. 3. r,, corresponds to the point of inflexion of the function A4, it is deter-

mined by “

2AG\  (PAG - |
(&)= (5T, e

With an increase of the initial supersaturation, the critical number of the droplets in-
creases and the critical radius r,, decreases.

The same results were obtained in the earlier analysis of condensation in one-com-
ponent closed isochoric systems [5]. A further analogy consists in the existence of a
lowest possible critical value V, of the volume of the whole system. For V < V¥, the
system cannot occur a phase transition by the mechanism of homogeneous nucleation.

Ve (m3)
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=%, \
10 I T ] f ] T T

10 20 30 40 50 60 70 80 Y

Fig, 4. Critical volume V, of the whole system as a function of the initial supersaturation y for
different values of x (ethanol, 7' = 312.35 K)
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The critical value V, is presented as a function of the ratio y — p/py in Fig. 4.
With an increase of the initial supersaturation the critical volume decreases. '

The results of the thermodynamic investigations are summarized in Fig. 5. They
lead to the following conclusions concerning the proceeding of the phase transition.

In a first stage of nucleation a big number of small clusters appears and a state in
the neighbourhood of the critical state (Se» Tae) developes. The broken line in Fig. b re-
presents the expected path of further evolution of the system of droplets (see also [1, 8]).

The evolution of the system is characterized by a growth of the mean radius of the
droplets and a decrease of their number. These are the characteristic properties of the
process of Ostwald ripening. In the next section a kinetic description of this process
is given,

AG

S,

Fig. b. Qualitative behaviour of the function AG = AQ(r,) for different values of the number of
droplets (s; < s, < s, < s,). With a broken line he expected path of development of the system
of clusters is marked

4. Kinetic Description of the Growth of Droplets

Based-on a general growth equation for clusters of a new phase proposed in pre-
ceding papers [4, 6] the time evolution of the volume of the j-th droplet V) can be
described in the following way :

av % D 1 o
% - 5 T =Y )
@t T o EBT D 5w 447 (1)

0p 18 the molar density, D the diffusion coefficient of the condensing component in the
gaseous phase, g, the molar density of the liquid. AG() represents the change of the free
enthalpy of the system due to the growth of the j-th droplet.

In particular the evolution of only one droplet in the medium is given by

dr, o D P (ng—m,)] »— p, 20 :
—= == Z{In | = — —_—— 4.2
dt \sz rcx { o [290 (n - nzx)] QOZRT Qo;RTra} ( )

or for not too high values of the radius of the cluster by

(4.3)

——— ———

dt  2RT r,

Tok Tw
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The critical droplet radius 7,; can be expressed approximately by
2
Ty = . d — (4.4)
BT [m <— x) — ;J}
° Po Qa1
In a real system there exists a big number of droplets of different size. To describe
the time evolution of the system of clusters from this real distribution of clusters we go
over to an idealized ensemble of s identical clusters with the same mean radius r,.
Summarizing equation (4.1) over all these droplets equation (4.5) is obtained as

e @D 19,4 (4.5)

In accordance with the thermodynamic investigations the thermodynamic driving
force is the change of free enthalpy of the whole system due to the change of the number
of droplets. Therefore we can write:
oAG  d ds
"'8_7'“_ —_— E‘; AG ‘('Z_T: -

Taking into account (3.6) and (3.10) equation (4.6) can be transformed into (4.7)

(4.6)

dr, D ¢
== %%ﬁ 7 (1 -+ Z). (4.7)

The derivation of equation (3.5) with respect to time gives the following expression for
the time-development of the overall mass of the liquid phase: :

d 1 d
Z[In(sn,)] = — & =[] | (4.8)

The equations (4.7), (4.8) can be easily solved numerically. As the result the mean drop-
let radius, the mass of the liquid phase, and the number of droplets can be calculated

as a function of time. A
For long times (Z* — 0) the following analytic solutions can be derived (see also

[4]):

sV, = o [lnﬂ——p‘%}, 7'29;:390 Dgt,

mgy | Po  C.BT 0% BT
u — 1
s — [an—“ BT m (mﬁ — L&)] -, (4.9)
0o 4mDon, Do 0, BT t
RT \'Bagmn [ pzr p—py\ 1
= 2 (pt= - = 20—
001) (9 Qa@ODG) g ( ? Po QaRT ) t1/3

Here g, is the saturation density of the pure condensing gas in contact with the liquid
at a plane surface, 0,, the overall surface area of the s droplets. ,

In the asymptotic region the mass of the liquid phase is nearly constant, the overall
surface area of the droplets decreases with time.

5. Discussion
Up to now the growth of droplets was described phenomenologically. Some acdditional

information about the mechanism of growth of the system of droplets can be derived
by the formulation of the growth equation for a (s 4- 1)-th droplet with the radius 7.
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Do
©
Do

Based on (4.1) this equation can be written in the following form :

&r _ 20pDo _1_(_1_ _ _1_) ‘ (5.1)
dt — eiRT r \r, r) -

Changes in the gaseous medium due to the growth of the additional droplet are neglected
here.

The relative minimum of the free enthalpy assuming the existence of a fixed number
of s identical droplets with the common radius 7, (idealized ensemble) corresponds there-
fore to a critical droplet radius for the real distribution of clusters. Droplets with a
radius » > 7, grow, droplets with » < r, vanish. The critical radius grows more rapidly
than the radii of the single droplets and more and more droplets disappear.

The described mechanism of growth of the system of droplets represents the mecha-
- nism of Ostwald ripening. The analyzed here growth of droplets can be considered there-
fore as a special case of Ostwald ripening,

If in equation (4.3) g, is replaced by 0o the methods developed by Lirsuirz and Styo-
zov [10] or Marquser and Ross [11] for the description of the process of Ostwald
ripening can be used directly. Instead of (4.9) the following asymptotic solutions can
be obta\ined then:

8 Do g 0. 27TRT pr p—p Jl
8 __ S Lo =, ———(In 2 £ Lo} - 5.2
e T G RT g2V [2@0 327;1)0(“% @aRT) : - 62

In the asymptotic region these methods lead therefore qualitatively to the same results
as derived by us. The rate of growth of the mean radius of droplets calculated by our
method is greater by a factor of the order three. This is due firstly to the approximation
0p = Qo used in [10, 11] and secondly to the assumption of an idealized ensemble of s

identical clusters underlying our method. :
Using, for instance, the method of LirsurTz and Stvozov it can be shown further
that in the asymptotic region the distribution of droplets in reduced variables r,/r,,

is nearly constant.

The method applied here has the advantage that the thermodynamic origin of the
growth process is demonstrated very clearly and that explicit expressions for the des-
cription of the initial stage of ripening are obtained.

Appendix: Necessary and Sufficient Conditions for the Thermodynamic Stability
of Droplets in the Gaseous Phase :

Assuming the thermodynamic constraints are given by
P = pg = const., T = const.,, n;=const.,, ¢=1,2, ..., k, (1)

the necessary (2) and sufficient conditions (3) for the thermodynamic stability of the
heterogeneous system consisting of s clusters in the medium can be expressed in the

following way: »
OGhe; = 0 (2)
02Gh,0, > 0 (3)

Thé condition (2) or (2.6) are assumed further to be fulfilled.
The states of the heterogeneous system determined by (2) or (2.6) are thermodynami-
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cally stable states if the following inequality is fulfilled (see also [3, b}):
s Eorould oy ) i k 8p(i) ) )
52Q, . = ¥ o (i _@) () §plD — 37 222 spdh s
E puld . ) opth 920 )
Ofia_ sy sy . (CPa_ () & 2 ) sy
+ ié; 1% onil) 6V Y P 1G% ol T 14Y (4)

d Lo Opig s iy s, (7
+ 31— Oy 3 5 onll) omg] )}-
=1 i Omg
"Here 6, is the Kronecker symbol and § denotes infinitesimal deviations from the state
given by (2). )
If the state given by (2) is a thermodynamically stable state the quadratic matrices
(b) are positive definite.

T o) | omp  Ouid | Opap ol | Bups  Opid i
on{d) " Ongg  Onll)  Ongp U onD) T ome OV
ousl) | Opas  Opsl | Ouap ousl) | duap  Opsl)
on{D  Onyg onil) ~ Ongg U omk)  Omp oV
opl) | O Ouid Oy oush | Oms  Opin
on) " Ongg  On§)  Omgp T onl)  Omgg OV
o) on) op) .
L ondd) onsl) T oniD) oV 2Dt

()

Taking into account the condition of inner stability of the volume phases [2, 12],
which underlies the thermodynamic description, the matrices (b) are positive definite
if their determinants J are positive. The inequality J > 0 must be fulfilled for each
of the ¢ clusters. For the case s = 1 the condition J > 0 is necessary and sufficient for
the thermodynamic stability.

The condition of inner stability of the volume phases leads further to the conclusion
that states given by (2) cannot correspond to maxima of the thermodynamic potential
(see also [3, 5]).

For one-component systems the necessary extreme conditions (2) lead to the equa-
tions (6):

N 207 -
PPEP) —p=—g»  #PEd) — pa(p) = 0. (6)

For a given value of the pressure the second of these equations uniquely determines
ofP. Therefore by the first of these equations V) and nf? are determined uniquely,
too. The equations (6) can be fulfilled consequently only if all clusters have the same
parameters. These parameters do not depend on the number of clusters. The necessary
condition for thermodynamic stability in the one-component case leads to the inequa-

lity
Tt = 0 (7)

and cannot be fulfilled.
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In one-component systems under the thermodynamic constraints (1) the states given
by (2) are unstable states of saddle-point type. -

Considering binary systems and assuming, that the liquid consists only of particles
of the second component, equation (2) leads to

Nz 267 o (nsD
4 (VU)) — P = s (7@) = ap(P> ¥p)- (8)

For any given x; the second of these equations uniquely determines 0" and, together
with the first equation, V{? and »{). The equations (8) can be fulfilled again only if
all clusters have the same parameters. xg and therefore the parameters of the clusters
depend on the number of clusters.

Assuming only one cluster in the system the equations (8) can be transformed into

(9):

N, 20,
%(‘f;:)“ﬁ*r—“~0,
(9)

(n,x)_ ( iy nzwazw>~0

b\, t8\v—v 7 —7.) ="

These equations implicitely determine two functions nd = n®(V,). The derivations
of these functions are given by (10):

Ou Oha 0x Op 0,
o) V. 8. n® V, B, 2mrk
oV, L ow, . I Omp ' V. 0w Om (10)
Vo G0, ' Vg oo V. 0.

The functions n{) have therefore qualitatively the form represented in Fig. 6. The
points of intersection of these functions correspond to solutions of the equations (9).

n&(l)}

f r
Lk &S &

Fig. 6. Qualitative behaviour of the functions ngf) = nfvl)(rl\,_)

As a necessary and sufficient condition for stability from (4) the following inequality
can be derived:
1 Ougg
Oy Vs Ooag 0% O
2aury 1 Bpy | 1 Ouap Vo pu (1)
Vo 0o~ Vg O0gp




J. ScamerzER and F. Scawsrrzer, Condensation in Binary Vapours 295

This condition is equivalent to the inequality (12):

on)  on®
v, S av,

(12)

Therefore the state marked in Fig. 6 with a full point is a thermodynamically state,
the state marked by a circle is an unstable state of saddle-point type.

A change of the number of clusters leads to a variation of the values 7, and 7.
Since an increase of the number of clusters is equivalent to a decrease of the volume V
for one cluster the variation of r,; and r,, can be caleulated by (13) [3]:

AV, = = Sz TR 2128 ' (18)

An increase of the number of clusters or a decrease of the volume for one cluster

(AV < 0) leads to an decrease of r,, (J > 0) and to an increase of r (J < 0).
Further it can be shown starting with (4) that in the considered binary system a state

consisting of more than one cluster cannot be thermodynamically stable. The concludions

derived by WaRrp et al. [18, 19] concerning the possibility of a stable coexistence of

bubbles in finite closed systems of a liquidgas solution are, therefore, wrong (see also

[20]).
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